

Frequency Stability-Constrained Unit Commitment: Tight Approximation using Bernstein Polynomials

Bo Zhou, Ruiwei Jiang, Siqian Shen

Department of Industrial and Operations Engineering University of Michigan at Ann Arbor

Phoenix, Oct. 16, 2023

Outline

Introduction and Problem Formulation

Solution Method

Case Study

Conclusions

Power System Frequency

The frequency of power systems should be maintained closely around the nominal value

General Frequency Dynamics

Frequency dynamics during an under-frequency event (a sudden loss of generation at t_0)

t₀ - t₁: Inertia plays a major role in mitigating frequency drop (PFR does not respond effectively)
 t₁ - t₂: PFR becomes significant, and the frequency eventually reaches a steady state
 t_{nadir}: Time to reach the nadir during the whole dynamics

Frequency Security Metrics

Frequency dynamics during an under-frequency event (a sudden loss of generation at t_0)

Governing Equations

Governing equations of system frequency dynamics
inertia load damping imbalance PFR

$$2H_{sys}\frac{d\Delta f(t)}{dt} + k_D P_d \Delta f(t) = \Delta P_d - P_{sys}^{PR}(t)$$

 $\Delta f(t)|_{t=0} = 0$ (Initial condition)

Total PFR power

$$\begin{split} P_{sys}^{PR}(t) &= \sum_{i} \begin{bmatrix} P_{g,i}^{PR}(t) + P_{w,i}^{PR}(t) \end{bmatrix} \\ T_{g,i} \frac{\mathrm{d}P_{g,i}^{PR}(t)}{\mathrm{d}t} + P_{g,i}^{PR}(t) &= G_{g,i}I_{g,i}\Delta f(t) \\ P_{g,i}^{PR}(t)|_{t=0} &= 0 \text{ (Initial condition)} \end{split}$$

Notation: *i*: bus index k_D : load damping rate P_d : total power load ΔP_d : power imbalance T_g/T_w : response constant G_g/G_w : droop factor H_{sys} : total inertia Δf : frequency deviation P_{SVS}^{PR} : total PFR power P_g^{PR}/P_w^{PR} : PFR power I_g : online / offline status

PFR power from thermal units

PFR power from wind farms

Frequency-Secured Unit Commitment

Objective: Minimize operation cost

$$\min \sum_{\tau} \sum_{i} \left(\frac{c_{su,i} U_{g,i,\tau} + c_{sd,i} D_{g,i,\tau}}{_{\text{startup & shutdown cost}}} + \frac{c_g^{PR} R_{g,i,\tau}^{PR} + c_w^{PR} R_{w,i,\tau}^{PR}}{_{\text{PFR reserve cost}}} \right) + \sum_{\tau} \sum_{i} \sum_{s} \frac{\omega_s F_{g,i,\tau}^s}{_{\text{expected fuel cost}}}$$

Subject to:

- Piecewise linearization of fuel cost calculation
- Logic constraint of unit status
- Minimum online & offline time constraint
- Frequency security constraint
- Generation and ramping constraint
- Power balance constraint
- DC power flow constraint

Ref: B. Zhou, J. Fang, X. Ai, et al, "Partial-dimensional correlationaided convex-hull uncertainty set for robust unit commitment," IEEE Transactions on Power Systems, 38(03), 2434-2446, 2023.

Frequency-Secured Unit Commitment
Objective: Minimize operation cost

$$\min \sum_{\tau} \sum_{i} \left(c_{su,i}U_{g,i,\tau} + c_{sd,i}D_{g,i,\tau} + c_{g}^{PR}R_{g,i,\tau}^{PR} + c_{w}^{PR}R_{w,i,\tau}^{PR} \right) + \sum_{\tau} \sum_{i} \sum_{s} \sum_{s} \sum_{i} \sum_{j=1}^{s} \sum_{i=1}^{s} \sum_{j=1}^{s} \sum_{i=1}^{s} \sum_{j=1}^{s} \sum_{$$

DAE-Constrained Optimization

Objective: Minimize operation cost

$$\min \sum_{\tau} \sum_{i} \left(\frac{c_{su,i} U_{g,i,\tau} + c_{sd,i} D_{g,i,\tau}}{\text{startup \& shutdown cost}} + \frac{c_g^{PR} R_{g,i,\tau}^{PR} + c_w^{PR} R_{w,i,\tau}^{PR}}{\text{PFR reserve cost}} \right) + \sum_{\tau} \sum_{i} \sum_{s} \frac{\omega_s F_{g,i,\tau}^s}{\text{expected fuel cost}}$$

Subject to: Two types of constraints

d*t*

- Discrete-time constraints mixed-integer linear equations, tractably handled by solvers
- Continuous-time constraints differential algebraic equations (DAE)

$$2H_{sys}\frac{\mathrm{d}\Delta f(t)}{\mathrm{d}t} + k_D P_d \Delta f(t) = \Delta P_d - P_{sys}^{PR}(t)$$

$$\Delta f(t)|_{t=0} = 0$$

$$P_{g,i}^{PR}(t) = G_{w,i}\Delta f(t)$$

$$P_{g,i}^{PR}(t) = F_{g,i}^{PR}(t) = G_{g,i}I_{g,i}\Delta f(t)$$

$$P_{g,i}^{PR}(t)|_{t=0} = 0$$

$$\Delta f(t)|_{nadir} \leq \overline{\Delta f} \qquad \Delta f(t)|_{steady} \leq \overline{\Delta f_{err}}$$

Outline

Introduction and Problem Formulation

Solution Method

Case Study Conclusions

Bernstein Polynomial Approximation

Core idea: Use Bernstein polynomial (BP) spline to approximate dynamics

Transformation – Part 1

According to $F(t) = (F^B)^T B_3(t)$, we have

$$\searrow \text{ Integral term} \qquad \qquad \int_0^1 F(t) dt = (F^B)^T \int_0^1 B_3(t) dt = 1^T F^B / 4$$
from 0 to 1

$$\blacktriangleright \text{ Derivative term} \qquad \frac{\mathrm{d}F(t)}{\mathrm{d}t} = 3[F^{B,1} - F^{B,0}, F^{B,2} - F^{B,1}, F^{B,3} - F^{B,2}]B_2(t) = \left(W_3 F^B\right)^{\mathrm{T}} B_2(t)$$
quadratic BP

$$\blacktriangleright \text{ Equality equation } F(t) = 0 \Leftrightarrow \left(F^B \right)^T B_3(t) = 0 \Leftrightarrow F^{B,k} = 0$$

undetermined coefficient method

How about inequality equations and ODEs?

Convex-hull Property of BP

BP splines must be inside their corresponding control polygons

➢ Inequality equation $F(t) ≤ c ⇐ \max\{F^{B,k}\} ≤ c ⇔ F^{B,k} ≤ c$

Subdivision of BP

Break BP splines into several segments, then each segment is still a BP spline

Ref: W. Boehm and A. Mller, "On de Casteljau's algorithm," Computer Aided Geometric Design, vol. 16, no. 7, pp. 587–605, 1999.

Transformation – Part 2

By **repeatedly** implementing the subdivision property, we can narrow the gap between BP splines and control curves

Finequality equation $F(t) \leq c \leftarrow J^{(m)}F^B \leq c$

Operation Matrix of BP & Transformation – Part 3

Basic idea: Use (n - 1)th-order polynomial to approximate *n*th-order terms

 $t^4 \approx at^3 + bt^2 + ct + d$ $\begin{array}{c} ---: t^4 \\ ---: at^3 + bt^2 + ct + d \\ ---: error \\ ---: error \times 10 \end{array}$ 0.6 $\int_{0}^{t} B_{3}(t) dt \approx LB_{3}(t)$ operational matrix 0.4 0.2 $\frac{\mathrm{d}P(t)}{\mathrm{d}t} = F(t) \Rightarrow \int_0^t \frac{\mathrm{d}P(t)}{\mathrm{d}t} \,\mathrm{d}t = \int_0^t F(t) \,\mathrm{d}t \Rightarrow$ 0.5 0.4 0.6 0.7 0.3 0.8 0.9 Maximum error: 0.006122 $P(t) - P(0) = \int_0^t F(t) dt = \left(F^B\right)^T \int_0^t B_3(t) dt \approx \left(F^B\right)^T LB_3(t)$ Average error: 0.004104

Ref: S. A. Yousefi, M. Behroozifar. Operational matrices of Bernstein polynomials and their applications. International Journal of Systems Science. 2010, 41(6): 709-716

Transformation Rules

According to $F(t) = (F^B)^T B_3(t)$, we have

 $\sum_{\text{from 0 to 1}} \text{Integral term} \qquad \int_0^1 F(t) dt = 1^T F^B / 4$

➢ Integral term from 0 to t

Derivative term

 $\int_0^t F(t) dt \approx (F^B)^T LB_3(t)$ $\frac{dF(t)}{dt} = (W_3 F^B)^T B_2(t)$

 \blacktriangleright Equality equation $F(\tau) = 0$

 $F(\tau)=0 \Leftrightarrow F^{B,k}=0$

➢ Inequality equation F(t) ≤ c ⇐ J^(m)F^B ≤ c

Mixed-integer linear reformulation

Objective: Minimize operation cost

$$\min \sum_{\tau} \sum_{i} \left(\frac{c_{su,i} U_{g,i,\tau} + c_{sd,i} D_{g,i,\tau}}{\text{startup \& shutdown cost}} + \frac{c_g^{PR} R_{g,i,\tau}^{PR} + c_w^{PR} R_{w,i,\tau}^{PR}}{\text{PFR reserve cost}} \right) + \sum_{\tau} \sum_{i} \sum_{s} \frac{\omega_s F_{g,i,\tau}^s}{\text{expected fuel cost}}$$

Subject to:

- - -

- Discrete-time constraints mixed-integer linear equations, tractably handled by solvers
- Continuous-time constraints → mixed-integer linear equations

18/27

Outline

Introduction and Problem Formulation Solution Method

Case Study

Conclusions

An Example

H is the horizon considered for frequency dynamics

NADIR VALUES AND THEIR RELATIVE ERRORS UNDER DIFFERENT H

BP approximation

H=20s

-0.3866

0.46%

H=10s

-0.3892

0.20%

H=30s

-0.3759

3.21%

Segment-wise Approximation

1-segment BP approximation is not able to fit frequency dynamics for infinitely long

- A multi-segment BP approximation produces better performance
- The number of constraints increases linearly with the number of segments.

We suggest an **uneven division of H**

the early segments should be shorter for a more accurate estimate of nadir
 the latter segments should be longer to relieve computational burden

An Example

More segments bring a higher accuracy but increase the number of variables and constraints NADIR VALUES AND THEIR RELATIVE ERRORS UNDER DIFFERENT N

	Simulink	BP approximation			
		N = 1	N = 2	N = 4	N = 8
Nadir value (Hz) Relative error	-0.3884 N/A	-0.3759 3.21%	-0.3893 0.23%	-0.3892 0.20%	-0.3883 0.02%

An Example

0.004% relative error good accuracy!

An Example

Compare with the existing piecewise linearization method using 99 evaluation points

- 24/27

Outline

Introduction and Problem Formulation Solution Method Case Study Conclusions

Conclusion

- We incorporated the frequency dynamics using DAEs into the stochastic UC model and validated the effectiveness in deciding UC and PFR reserves for frequency security
- We adopted **BP** splines to obtain a linear approximation of the DAEs and demonstrated the high accuracy in depicting frequency dynamics
- The method can consider various control processes, such as the dead band^[1]
- The method can be tractably applied to other types of dynamics, such as natural gas dynamics^[2], temperature dynamics, etc.

[1] Bo Zhou, Ruiwei Jiang, Siqian Shen, "Frequency-Secured Unit Commitment: Tight Approximation using Bernstein Polynomials," IEEE Transactions on Power Systems, 2nd review. (arXiv: 2212.12088)

[2] Bo Zhou, et al, "Function-space optimization to coordinate multi-energy storage across the integrated electricity and natural gas system," International Journal of Electrical Power & Energy System, 2023.

Thank You for Attention!