# Frequency Stability-Constrained Unit Commitment:Tight Approximation using Bernstein Polynomials 

Bo Zhou, Ruiwei Jiang, Siqian Shen<br>Department of Industrial and Operations Engineering University of Michigan at Ann Arbor

## Outline

$\square$ Introduction and Problem Formulation
$\square$ Solution Method
$\square$ Case Study
$\square$ Conclusions

## Power System Frequency



The frequency of power systems should be maintained closely around the nominal value

## General Frequency Dynamics

Frequency dynamics during an under-frequency event (a sudden loss of generation at $t_{0}$ )

> $t_{0}-t_{1}$ : Inertia plays a major role in mitigating frequency drop (PFR does not respond effectively)
$>t_{1}-t_{2}$ : PFR becomes significant, and the frequency eventually reaches a steady state
$>t_{\text {nadir }}$ :Time to reach the nadir during the whole dynamics

## Frequency Security Metrics

Frequency dynamics during an under-frequency event (a sudden loss of generation at $t_{0}$ )


## Governing Equations

Governing equations of system frequency dynamics

$$
\begin{array}{r}
2 H_{s y s} \frac{\mathrm{~d} \Delta f(t)}{\mathrm{d} t}+k_{D} P_{d} \Delta f(t)=\Delta P_{d}-P_{s y s}^{P R}(t) \\
\left.\Delta f(t)\right|_{t=0}=0 \text { (Initial condition) }
\end{array}
$$

## Total PFR power

$$
\begin{gathered}
P_{s y s}^{P R}(t)=\sum_{i}\left[P_{g, i}^{P R}(t)\right. \\
T_{g, i} \frac{P_{w, i}^{P R}(t)}{} \prod_{g, i}^{\mathrm{d} t}+P_{g, i}^{P R}(t)=G_{g, i} I_{g, i} \Delta f(t) \quad P_{w, i}^{P R}(t)=G_{w, i} \Delta f(t) \\
\left.P_{g, i}^{P R}(t)\right|_{t=0}=0 \text { (Initial condition) }
\end{gathered}
$$

## Frequency-Secured Unit Commitment

Objective: Minimize operation cost


Subject to:

- Piecewise linearization of fuel cost calculation
- Logic constraint of unit status
- Minimum online \& offline time constraint
- Frequency security constraint
- Generation and ramping constraint
- Power balance constraint
- DC power flow constraint

Ref: B. Zhou, J. Fang, X. Ai, et al, "Partial-dimensional correlationaided convex-hull uncertainty set for robust unit commitment,"
IEEETransactions on Power Systems, 38(03), 2434-2446, 2023.

## Frequency-Secured Unit Commitm Notation:

$S$ : scenario index
$\tau$ : period index
$c_{(\cdot)}$ : cost coefficient
$\min \sum\left(c_{s u, i} U_{g, i, \tau}+c_{s d, i} D_{g, i, \tau}+c_{g}^{P R} R_{g, i, \tau}^{P R}+c^{P R} R_{w R}^{P R}\right)+\sum \sum \sum \begin{aligned} & \omega_{s} \text { : probability of scenario } S\end{aligned}$ $\sum_{\tau} \sum_{i} \frac{\left(c_{s u, i} U_{g, i, \tau}+c_{s d, i} D_{g, i, \tau}\right.}{\text { startup \& shutdown cost }}+\frac{\left.c_{g}^{P R} R_{g, i, \tau}^{P R}+c_{w}^{P R} R_{w, i, \tau}^{P R}\right)}{\text { PFR reserve cost }}+\sum_{\tau} \sum_{i} \sum_{s}$ $P_{w}^{A}:$ available wind power
$H_{g} / H_{w}:$ inertia constant
$P_{w}:$ integrated wind power
Subject to:

- Piecewise linearization of fuel cost calculation
- Logic constraint of unit status
- Minimum online \& offline time constraint

Governing equations Frequency security metrics

- Frequency security constraint
- Generation and ramping constraint
- Power balance constraint
- DC power flow constraint

Ref: B. Zhou, J. Fang, X. Ai, et al, "Partial-dimensional correlation-

$$
\begin{aligned}
& H_{s y s, \tau}=\sum_{i}\left(H_{g, i} I_{g, i, \tau}+H_{w, i}\right) \\
& P_{g, i, \tau}^{P R}(t) \leq R_{g, i, \tau}^{P R} \quad P_{w, i, \tau}^{P R}(t) \leq R_{w, i, \tau}^{P R} \\
& 0 \leq P_{w, i, \tau}^{s} \leq P_{w, i, \tau}^{A, s}-R_{w, i, \tau}^{P R}
\end{aligned}
$$

## DAE-Constrained Optimization

Objective: Minimize operation cost

$$
\min \sum_{\tau} \sum_{i} \frac{\left(c_{s u, i} U_{g, i, \tau}+c_{s d, i} D_{g, i, \tau}\right.}{\text { startup \& shutdown cost }}+\frac{\left.c_{g}^{P R} R_{g, i, \tau}^{P R}+c_{w}^{P R} R_{w, i, \tau}^{P R}\right)}{\text { PFR reserve cost }}+\sum_{\tau} \sum_{i} \sum_{s} \frac{\omega_{s} F_{g, i, \tau}^{s}}{\text { expected fuel cost }}
$$

Subject to: Two types of constraints

- Discrete-time constraints - mixed-integer linear equations, tractably handled by solvers
- Continuous-time constraints - differential algebraic equations (DAE)

$$
\begin{array}{rlrl}
2 H_{s y s} \frac{\mathrm{~d} \Delta f(t)}{\mathrm{d} t}+k_{D} P_{d} \Delta f(t)=\Delta P_{d}-P_{s y s}^{P R}(t) & P_{w, i}^{P R}(t)=G_{w, i} \Delta f(t) \\
\left.\Delta f(t)\right|_{t=0} & =0 & \\
T_{g, i} \frac{\mathrm{~d} P_{g, i}^{P R}(t)}{\mathrm{d} t}+P_{g, i}^{P R}(t) & =G_{g, i} I_{g, i} \Delta f(t) & P_{g, i, \tau}^{P R}(t) \leq R_{g, i, \tau}^{P R} \quad P_{w, i, \tau}^{P R}(t) \leq R_{w, i, \tau}^{P R} \\
\left.P_{g, i}^{P R}(t)\right|_{t=0} ^{P} & =0 & \left.\Delta f(t)\right|_{\text {nadir }} \leq\left.\overline{\Delta f} \quad \Delta f(t)\right|_{\text {steady }} \leq \overline{\Delta f_{e r r}}
\end{array}
$$

$$
\frac{\mathrm{d} \Delta f(t)}{\mathrm{d} t} \leq \bar{f}
$$

## Outline

$\square$ Introduction and Problem Formulation
$\square$ Solution Method
$\square$ Case Study
$\square$ Conclusions

## Bernstein Polynomial Approximation

Core idea: Use Bernstein polynomial (BP) spline to approximate dynamics


BP spline $\quad F(t)=\sum_{k=0}^{3} F^{B, k} B_{3, k}(t)=\left(F^{B}\right)^{\mathrm{T}} B_{3}(t), t \in[0,1]$
Cubic BP $\quad B_{3, k}(t):=\binom{3}{k} t^{k}(1-t)^{3-k}, t \in[0,1]$

## Transformation - Part 1

According to $F(t)=\left(F^{B}\right)^{\mathrm{T}} B_{3}(t)$, we have
$>$ Integral term
from 0 to 1

$$
\int_{0}^{1} F(t) \mathrm{d} t=\left(F^{B}\right)^{\mathrm{T}} \int_{0}^{1} B_{3}(t) \mathrm{d} t=1^{\mathrm{T}} F^{B} / 4
$$

Derivative term

$$
\frac{\mathrm{d} F(t)}{\mathrm{d} t}=3\left[F^{B, 1}-F^{B, 0}, F^{B, 2}-F^{B, 1}, F^{B, 3}-F^{B, 2}\right] \boldsymbol{B}_{2}(t)=\left(\boldsymbol{W}_{3} \boldsymbol{F}^{\boldsymbol{B}}\right)^{\mathrm{T}} \boldsymbol{B}_{2}(t)
$$

Equality equation

$$
F(t)=0 \Leftrightarrow\left(\boldsymbol{F}^{B}\right)^{\mathrm{T}} \boldsymbol{B}_{3}(t)=0 \Leftrightarrow F^{B, k}=0
$$

undetermined coefficient method

## Convex-hull Property of BP

BP splines must be inside their corresponding control polygons


Inequality equation $\quad F(t) \leq c \Leftarrow \max \left\{F^{B, k}\right\} \leq c \Leftrightarrow F^{B, k} \leq c$

## Subdivision of BP

Break BP splines into several segments, then each segment is still a BP spline


Notation:
$\mathbb{P}_{i}:$ set of control points after $i$ subdivision
$y_{P}$ : value of control point P
$Y^{(i)}$ : vector of ordinate of control points after $i$ subdivision
Ref:W. Boehm and A. Mller, "On de Casteljau's algorithm," Computer Aided Geometric Design, vol. 16, no. 7, pp. 587-605, 1999.
de Casteljau's algorithm
$\left\{\begin{array}{l}\overrightarrow{\mathrm{P}_{1} \mathrm{Q}_{1}}=t_{0} \overrightarrow{\mathrm{P}_{1} \mathrm{P}_{2}}, \overrightarrow{\mathrm{P}_{2} \mathrm{Q}_{2}}=t_{0} \overrightarrow{\mathrm{P}_{2} \mathrm{P}_{3}}, \overrightarrow{\mathrm{P}_{3} \mathrm{Q}_{3}}=t_{0} \overrightarrow{\mathrm{P}_{3} \mathrm{P}_{4}} \\ \overrightarrow{\mathrm{Q}_{1} \mathrm{M}_{1}}=t_{0} \overrightarrow{\mathrm{Q}_{1} \mathrm{Q}_{2}}, \overrightarrow{\mathrm{Q}_{2} \mathrm{M}_{2}}=t_{0} \overrightarrow{\mathrm{Q}_{2} \mathrm{Q}_{3}} \\ \overrightarrow{\mathrm{M}_{1} \mathrm{~S}}=t_{0} \overrightarrow{\mathrm{M}_{1} \mathrm{M}_{2}}\end{array}\right.$

Assume $Y^{(0)}=F^{B}$, we have $Y^{(1)}=A Y^{(0)}$

$$
\begin{aligned}
& \boldsymbol{A}_{\boldsymbol{l}}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1-t_{0} & t_{0} & 0 & 0 \\
\left(1-t_{0}\right)^{2} & 2 \tau_{0}\left(1-t_{0}\right) & t_{0}^{2} & 0 \\
\left(1-t_{0}\right)^{3} & 3 \tau_{0}\left(1-t_{0}\right)^{2} & 3 t_{0}^{2}\left(1-t_{0}\right) & t_{0}^{3}
\end{array}\right] \\
& \boldsymbol{A}_{\boldsymbol{r}}=\left[\begin{array}{cccc}
\left(1-t_{0}\right)^{3} & 3 \tau_{0}\left(1-t_{0}\right)^{2} & 3 t_{0}^{2}\left(1-t_{0}\right) & t_{0}^{3} \\
0 & \left(1-t_{0}\right)^{2} & 2 t_{0}\left(1-t_{0}\right) & t_{0}^{2} \\
0 & 0 & 1-t_{0} & t_{0} \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \boldsymbol{A}=\left[\boldsymbol{A}_{\boldsymbol{l}}^{\mathrm{T}}, \boldsymbol{A}_{\boldsymbol{r}}^{\mathrm{T}}\right]^{\mathrm{T}}
\end{aligned}
$$

## Transformation - Part 2

By repeatedly implementing the subdivision property, we can narrow the gap between
BP splines and control curves


## Operation Matrix of BP \& Transformation - Part 3

Basic idea: Use $(n-1)$ th-order polynomial to approximate $n$ th-order terms

$$
\begin{gathered}
t^{4} \approx a t^{3}+b t^{2}+c t+d \\
\int_{0}^{t} B_{3}(t) \mathrm{d} t \approx L B_{3}(t) \\
\frac{\mathbf{d} P(t)}{\mathbf{d} t}=F(t) \Rightarrow \int_{0}^{t} \frac{\mathbf{d} P(t)}{\mathbf{d} t} \mathrm{~d} t=\int_{0}^{t} F(t) \mathrm{d} t \Rightarrow \\
P(t)-P(0)=\int_{0}^{t} F(t) \mathrm{d} t=\left(F^{B}\right)^{T} \int_{0}^{t} B_{3}(t) \mathrm{d} t \approx\left(F^{B}\right)^{T} L B_{3}(t)
\end{gathered}
$$



## Transformation Rules

According to $F(t)=\left(F^{B}\right)^{\mathrm{T}} B_{3}(t)$, we have
$>$ Integral term
from 0 to 1
$>$ Integral term from 0 to $t$
$>$ Derivative term

$$
\frac{\mathrm{d} F(t)}{\mathrm{d} t}=\left(W_{3} F^{B}\right)^{T} B_{2}(t)
$$

$>$ Equality equation $F(\tau)=0 \Leftrightarrow F^{B, k}=0$
$>$ Inequality equation $\quad F(t) \leq c \Leftarrow J^{(m)} F^{B} \leq c$

## Mixed-integer linear reformulation

Objective: Minimize operation cost

$$
\min \sum_{\tau} \sum_{i} \frac{\left(c_{s u, i} U_{g, i, \tau}+c_{s d, i} D_{g, i, \tau}\right.}{\text { startup \& shutdown cost }}+\frac{\left.c_{g}^{P R} R_{g, i, \tau}^{P R}+c_{w}^{P R} R_{w, i, \tau}^{P R}\right)}{\text { PFR reserve cost }}+\sum_{\tau} \sum_{i} \sum_{s} \frac{\omega_{s} F_{g, i, \tau}^{s}}{\text { expected fuel cost }}
$$

Subject to:

- Discrete-time constraints - mixed-integer linear equations, tractably handled by solvers
- Continuous-time constraints $\rightarrow$ mixed-integer linear equations

$$
P_{w, i, \tau^{\prime}}^{P R, B}=G_{w, i}\left(\Delta f_{\tau^{\prime}}^{B}-\Delta f_{D B}^{B}\right)
$$

$$
\begin{aligned}
& \frac{2 H_{s y s}}{h_{\tau^{\prime}}}\left(\Delta f_{\tau^{\prime}}^{B}-\Delta f_{\tau^{\prime}, \text { ini }}^{B}\right)+k_{D} P_{d} L^{\mathrm{T}} \Delta f_{\tau^{\prime}}^{B}=L^{\mathrm{T}}\left(\Delta P_{d}^{B}-P_{s y s, \tau^{\prime}}^{P R, B}\right) \\
& \Delta f_{\tau^{\prime}, i n i}^{B, k}\left|\tau^{\prime}=1=\Delta f_{D B}, \Delta f_{\tau^{\prime}, i n i}^{B, k}\right| \tau^{\prime}>1=\Delta f_{\tau^{\prime}-1}^{B, 3} \\
& \frac{T_{g, i}}{h_{\tau^{\prime}}}\left(P_{g, i, \tau^{\prime}}^{P R, B}-P_{g, i, \tau^{\prime}, i n i}^{P R, B}\right)+L^{\mathrm{T}} P_{g, i, \tau^{\prime}}^{P R, B}=G_{g, i} I_{g, i} L^{\mathrm{T}}\left(\Delta f_{\tau^{\prime}}^{B}-\Delta f_{D B}^{B}\right) \\
& P_{g, i, \tau^{\prime} ; i n i}^{P R, B, k}\left|\tau^{\prime}=1=0, P_{g, i, \tau^{\prime} ; i n i}^{P R, B, k}\right| \tau^{\prime}>1=P_{g, i, \tau^{\prime}-1}^{P R, B, 3} \\
& 2 \bar{f} H_{s y s, \tau} \geq \Delta P_{d, \tau} \quad J \Delta f_{\tau^{\prime}}^{B} \leq \overline{\Delta f} \\
& k_{D} P_{d} \overline{\Delta f_{e r r}}+G_{s y s, \tau}\left(\overline{\Delta f_{e r r}}-\Delta f_{D B}\right) \geq \Delta P_{d, \tau} \\
& J P_{g, i, \tau, \tau^{\prime}}^{P R, B} \leq R_{g, i, \tau}^{P R} \quad J P_{w, i, \tau, \tau^{\prime}}^{P R, B} \leq R_{w, i, \tau}^{P R}
\end{aligned}
$$

## Outline

$\square$ Introduction and Problem Formulation
$\square$ Solution Method
$\square$ Case Study
$\square$ Conclusions

## An Example



A shorter $H$ results in a higher accuracy, but may not cover the frequency nadir
A conservative $H$ causes a poor accuracy
$H$ is the horizon considered for frequency dynamics


Nadir Values and Their Relative Errors under Different $H$

|  | Simulink | BP approximation |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $H=5 \mathrm{~s}$ | $H=10 \mathrm{~s}$ | $H=20 \mathrm{~s}$ | $H=30 \mathrm{~s}$ |
| Nadir value (Hz) | -0.3884 | -0.3778 | -0.3892 | -0.3866 | -0.3759 |
| Relative error | N/A | $2.73 \%$ | $0.20 \%$ | $0.46 \%$ | $3.21 \%$ |

## Segment-wise Approximation

1 -segment BP approximation is not able to fit frequency dynamics for infinitely long

- A multi-segment BP approximation produces better performance
- The number of constraints increases linearly with the number of segments.


We suggest an uneven division of $\mathbf{H}$
$>$ the early segments should be shorter for a more accurate estimate of nadir
$>$ the latter segments should be longer to relieve computational burden

## An Example



More segments bring a higher accuracy but increase the number of variables and constraints

$$
H=30 \mathrm{~s}, \text { even division }
$$



Nadir Values and Their Relative Errors under Different $N$

|  | Simulink | BP approximation |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $N=1$ | $N=2$ | $N=4$ | $N=8$ |
| Nadir value (Hz) | -0.3884 | -0.3759 | -0.3893 | -0.3892 | -0.3883 |
| Relative error | N/A | $3.21 \%$ | $0.23 \%$ | $0.20 \%$ | $0.02 \%$ |

## An Example



$$
H=30 \mathrm{~s} \text {, uneven division }
$$

(such as $10 \%, 20 \%, 30 \%, 40 \%$ )

0.004\% relative error good accuracy!

## An Example

Compare with the existing piecewise linearization method using 99 evaluation points



The average relative error is one order of magnitude lower than that of piecewise linearization

Piecewise Linearization BP approximation

| Average relative error | $0.5031 \%$ | $0.0653 \%$ |
| :--- | :--- | :--- |

## Outline

## $\square$ Introduction and Problem Formulation

ISolution Method
$\square$ Case Study
$\square$ Conclusions

## Conclusion

- We incorporated the frequency dynamics using DAEs into the stochastic UC model and validated the effectiveness in deciding UC and PFR reserves for frequency security
- We adopted BP splines to obtain a linear approximation of the DAEs and demonstrated the high accuracy in depicting frequency dynamics
- The method can consider various control processes, such as the dead band ${ }^{[1]}$
- The method can be tractably applied to other types of dynamics, such as natural gas dynamics ${ }^{[2]}$, temperature dynamics, etc.

[^0]
## Thank You for Attention!


[^0]:    [1] Bo Zhou, Ruiwei Jiang, Siqian Shen, "Frequency-Secured Unit Commitment:Tight Approximation using Bernstein
    Polynomials," IEEETransactions on Power Systems, $2^{\text {nd }}$ review. (arXiv: 2212.12088)
    [2] Bo Zhou, et al, "Function-space optimization to coordinate multi-energy storage across the integrated electricity and natural gas system," International Journal of Electrical Power \& Energy System, 2023.

